1-22.4 mu M, showed 4- to 9-fold higher
activities than d4T against cell-free and cell-associated virus. Cellular uptake studies were conducted on CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of d4T attached through beta-alanine (9) or 12-aminododecanoic acid (10) as linkers. The fluorescein-substituted analog of d4T with long chain length (10) showed 12- to 15-fold higher cellular uptake profile than the corresponding analog with short chain length (9). These studies reveal that conjugation of fatty acids to d4T enhances the cellular uptake and anti-HIV activity of stavudine. (C) 2011 Elsevier Ltd. All rights reserved.”
“Estrogen Receptor (ER) is an important target LY2835219 supplier for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional
activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17 beta-estradiol (E-2) and the selective ER modulator raloxifene (RAL)] from the human ER alpha ligand-binding domain in monomeric and dimeric forms. E-2 dissociation occurs via three different pathways in ER Blebbistatin monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II’). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I’). Remarkably, ER dimerization strongly suppresses Paths II and II’ for E-2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand
dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation MK 5108 rates throughout the nuclear receptor family.”
“Macrophages are critically involved in the pathogenesis of genetically caused demyelination, as it occurs in models for inherited demyelinating neuropathies. It is presently unknown which factors link the Scbwann cell-based myelin mutation to the activation of endoneurial macrophages. Here we identified the chemokine monocyte chemoattractant protein-1 (MCP-1) as a first and crucial factor upregulated in Schwann cells of mice heterozygously deficient for the myelin protein zero. The chemokine could be identified as an important mediator of macrophage immigration into peripheral nerves.