Growth of L. sakei strains learn more on glucose and click here ribose The ten strains investigated showed faster growth rates when utilizing glucose as the sole carbon source (DMLG; glucose 0.5%) compared with ribose (DMLR; ribose 0.5%), a finding in agreement with previous observations [16–18, 30], confirming that glucose is the preferred carbon source in L. sakei. Preliminary 2-DE analysis of strains 23K, MF1053 and LS 25 resulted in gels with large differences in protein spot resolution (results not shown). Gels of samples issued from bacteria grown on ribose as the sole carbon source were of poor quality. Cell proteolysis due to slow growth and prolonged incubation
time may result in protein degradation and solubilization defect, as has previously been proposed [44]. Previous studies suggested a regulation of ribose utilization by the PTS and co-metabolism of these two sugars that are present in meat [17, 19, 21]. Since the addition of small amounts of glucose has been described to enhance growth on ribose [45], we used DMLRg (ribose 0.5%, glucose 0.02%) for further experiments. This indeed resulted in faster growth rates DMXAA purchase and a better spot
resolution of the resulting 2-DE gels that were comparable to the gels from bacterial samples grown in DMLG (results not shown). Thus further experiments were performed by growing bacteria in DMLG and DMLRg to study the glucose and ribose metabolisms, respectively. Protein patterns of the ten L. sakei strains After growth on glucose (in DMLG) and ribose (in DMLRg) an average of approximately 400 spots was observed after 2-DE in the pI range investigated. A variation of about 20% in the number of spots was detected
between the strains, as previously observed within the species [29, 35]. The overall protein expression pattern was similar for the different why strains grown on both carbon sources (data not shown), though distinct differences in the 40-kDa region of the 2-DE gels were observed (Figure 1). These differences were identified as resulting from two different migration profiles of four isoforms (different pI) of the glyceraldehyde-3-phosphate dehydrogenase (GapA) protein. The isoforms displayed a size variation, previously described by Chaillou et al. [29] to differentiate two L. sakei subgroups. Grouping of our ten strains based on the GapA isoforms migration profile was identical to the two genetic clusters previously obtained from rapidly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microarray-based comparative genome hybridization (CGH) analyses [30]. If those grouping methods reflect the subspecies division of L. sakei, eight of our strains including the sequenced strain 23K and the type strain CCUG 31331 belong to L. sakei subsp. carnosus, while the type strain DSM 20017 and the commercial starter culture strain LS 25 belong to L. sakei subsp. sakei.