PubMedCrossRef 26. Yapijakis C, Serefoglou Z, Vylliotis A, Nkenke E, Derka S, Vassiliou S, Avgoustidis D, Neukam FW, Patsouris E, Vairaktaris E: Association of polymorphisms in Tumor Necrosis AZD8186 purchase Factor Alpha and Beta genes with increased risk for oral cancer. Anticancer Res 2009, 29:2379–2386.PubMed 27. Motoyama S, Miura M, Hinai Y, Maruyama K, Usami S, Saito H, Minamiya Y, Satoh
S, Murata K, Suzuki T, Ogawa J: CRP genetic polymorphism is associated with lymph node metastasis in thoracic esophageal squamous cell cancer. Ann Surg Oncol 2009, 16:2479–2485.PubMedCrossRef 28. Gupta R, Sharma SC, Das SN: Association of TNF-alpha and TNFR1 promoters and 3′ UTR region of TNFR2 gene polymorphisms with genetic susceptibility to tobacco-related oral carcinoma RSL-3 in Asian Indians. Oral Oncol
2008, 44:455–463.PubMedCrossRef 29. Tobinai K, Kohno A, Shimada Y, Watanabe T, Tamura T, Takeyama K, Narabayashi M, Fukutomi T, Kondo H, Shimoyama M, Suemasu K, Members of the Clinical Barasertib supplier Trial Review Committee of the Japan Clinical Oncology Group: Toxicity grading criteria of the Japan Clinical Oncology Group (The Clinical Trial Review Committee of the Japan Clinical Oncology Group). Jpn J Clin Oncol 1993, 23:250–257.PubMed 30. Matsuyama R, Togo S, Shimizu D, Momiyama N, Ishikawa T, Ichikawa Y, Endo I, Kunisaki C, Suzuki H, Hayasizaki Y, Shimada H: Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: three-gene expression model
predicts clinical response. Int J Cancer 2006, 119:406–13.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions AK, TT and TS made conception, designed and coordinated the study. MY carried out genotyping study and statistical analysis. MF and NO carried out genotyping study. TO and TT collected samples and evaluated clinical responses. AK, KK, NO, TN and TS prepared the manuscript. All authors read and approved the final manuscript.”
“Abstract Cyclophilins (Cyps), the intracellular receptor for immunosuppressant cyclosporine A (CsA), play important cellular roles through crotamiton activities of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperones. Cyps are structurally conserved and found in both prokaryotic and eukaryotic organisms, including humans which contain 16 Cyp isoforms. Although human Cyps were identified about 25 years ago, their physiological and pathological roles have only been the focus of attention recently because of their possible involvement in diseases and ailments such as HIV infection, hepatitis B and C viral infection, atherosclerosis, ER stress-related diseases and neurodegenerative diseases, etc. There are reports for upregulated Cyps in many human cancers and there are also strong correlations found between Cyps overexpression and malignant transformation. This review discusses the important and diverse roles of Cyps overexpression in human cancers.