See accompanying article: http://dx doi org/10 1002/eji 200940085

See accompanying article: http://dx.doi.org/10.1002/eji.200940085 “
“Toll-like receptors (TLRs) recognize Selleckchem PD332991 pathogen-associated molecular patterns and results in innate immune system activation that results in

elicitation of the adaptive immune response. One crucial modulator of the adaptive immune response is CD40. However, whether these molecules influence each other’s expression and functions is not known. Therefore, we examined the effects of TLRs on CD40 expression on macrophages, the host cell for the protozoan parasite Leishmania major. While polyinosinic-polycytidylic acid [poly (I:C)], a TLR-3 ligand, lipopolysaccharide (LPS), a TLR-4 ligand, imiquimod, a TLR-7/8 ligand and cytosine–phosphate–guanosine (CpG), a TLR-9 ligand, were shown to enhance CD40 expression, CD40 stimulation enhanced mTOR inhibitor only TLR-9 expression. Therefore, we tested the synergism between CD40 and CpG in anti-leishmanial immune response. In Leishmania-infected macrophages, CpG was found to reduce CD40-induced extracellular stress-regulated kinase (ERK)1/2 activation; with the exception of interleukin (IL)-10, these ligands had differential effects on CD40-induced IL-1α,

IL-6 and IL-12 production. CpG significantly enhanced the anti-leishmanial function of CD40 with differential effects on IL-4, IL-10 and interferon (IFN)-γ production in susceptible BALB/c mice. Thus, we report the first systematic study on CD40–TLR cross-talk that regulated the experimental L. major infection. “
“The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates immunosuppression caused by a variety of environmental contaminants, such as polycyclic aromatic hydrocarbons or dioxins. Recent evidence suggests that AhR plays an important role in T-cell-mediated

immune responses by affecting the polarization GBA3 and differentiation of activated T cells. However, the regulation of AhR expression in activated T cells remains poorly characterized. In the present study, we used purified human T cells stimulated with anti-CD3 and anti-CD28 Abs to investigate the effect of T-cell activation on AhR mRNA and protein expression. The expression of AhR mRNA increased significantly and rapidly after T-cell activation, identifying AhR as an immediate-early activation gene. AhR upregulation occurred in all of the T-cell subtypes, and is associated with its nuclear translocation and induction of the cytochromes P-450 1A1 and 1B1 mRNA expression in the absence of exogenous signals. In addition, the use of an AhR antagonist or siRNA-mediated AhR knockdown significantly inhibited IL-22 expression, suggesting that expression and functional activation of AhR is necessary for the secretion of IL-22 by activated T cells. In conclusion, our data support the idea that AhR is a major player in T-cell physiology.

Comments are closed.