In this study, biofilm-forming P. intermedia see more strain 17 showed stronger ability to induce abscesses in mice than
that of strain 17-2, which was a naturally occurring variant of strain 17 that did not produce surface-associated fibrous material and therefore not capable of forming a biofilm. It is evidently shown that the slime/EPS production is critical for bacteria to exhibit the resistance to the neutrophil phagocytosis [33–36], though some EPS are not essential to bacterial adherence to host cells or for systemic virulence [37, 38]. Jesaitis et al. [39] demonstrated that human neutrophils that settled on P. aeruginosa biofilms became phagocytically engorged, partially degranulated, and engulfed planktonic bacteria released from the biofilms. Deighton et al. [40] compared the virulence of slime-positive Staphylococcus epidermidis with that of slime-negative strain in a mouse model of subcutaneous infection and showed that biofilm-positive MI-503 supplier strains produced significantly more abscesses that persisted longer than biofilm-negative strains. TEM observation in our previous [16] and this study showed that P. nigrescens as well as P. intermedia with mannose-rich EPS appeared
to be recognized by human leukocytes but not internalized. Leid et al. [41] have shown that human leukocytes can easily penetrate Staphylococcus aureus biofilms but fail to phagocytose the bacteria. Though we have to carefully investigate the possibility that multiple G protein-coupled receptor kinase mutations exist in strain 17-2 and lead to the observed incapability to induce abscesses in mice, it is conceivable that biofilm bacteria being held together by EPS as in this case with strain 17 might present JAK inhibitor a huge physical challenge for phagocytosing neutrophils. In our previous study [16], we observed the restoration of the induction of abscess formation in mice when the purified EPS from the biofilm-forming strain of P. nigrescens was added to the cultures of a biofilm-non-forming mutant and injected into mice. As
a consequence of these neutrophils being frustrated by their inability to phagocytose this bacterial mass, this might trigger the unregulated release of bactericidal compounds that could cause tissue injury as shown in the inflammatory pathway associated with lung injury [42, 43] or chronic wounds [44]. The cellular components from neutrophils themselves are known to exert a stimulatory effect on the developing P. aeruginosa biofilm when the host fails to eradicate the infection [45]. Bacterial biofilm formation is likely to involve a cascade of gene expression events associating with a crossover of many sensing systems directed against environmental changes [46]. When we compare the microarray expression data obtained from strain 17 as bacterial cells were producing EPS to those of strain 17-2 as EPS non-producing variant, stress inducible heat shock proteins were up-regulated in strain 17 at a gene transcriptional level.